103 research outputs found

    Coordinated Beamforming with Relaxed Zero Forcing: The Sequential Orthogonal Projection Combining Method and Rate Control

    Full text link
    In this paper, coordinated beamforming based on relaxed zero forcing (RZF) for K transmitter-receiver pair multiple-input single-output (MISO) and multiple-input multiple-output (MIMO) interference channels is considered. In the RZF coordinated beamforming, conventional zero-forcing interference leakage constraints are relaxed so that some predetermined interference leakage to undesired receivers is allowed in order to increase the beam design space for larger rates than those of the zero-forcing (ZF) scheme or to make beam design feasible when ZF is impossible. In the MISO case, it is shown that the rate-maximizing beam vector under the RZF framework for a given set of interference leakage levels can be obtained by sequential orthogonal projection combining (SOPC). Based on this, exact and approximate closed-form solutions are provided in two-user and three-user cases, respectively, and an efficient beam design algorithm for RZF coordinated beamforming is provided in general cases. Furthermore, the rate control problem under the RZF framework is considered. A centralized approach and a distributed heuristic approach are proposed to control the position of the designed rate-tuple in the achievable rate region. Finally, the RZF framework is extended to MIMO interference channels by deriving a new lower bound on the rate of each user.Comment: Lemma 1 proof corrected; a new SOPC algorithm invented; K > N case considere

    Outage Probability and Outage-Based Robust Beamforming for MIMO Interference Channels with Imperfect Channel State Information

    Full text link
    In this paper, the outage probability and outage-based beam design for multiple-input multiple-output (MIMO) interference channels are considered. First, closed-form expressions for the outage probability in MIMO interference channels are derived under the assumption of Gaussian-distributed channel state information (CSI) error, and the asymptotic behavior of the outage probability as a function of several system parameters is examined by using the Chernoff bound. It is shown that the outage probability decreases exponentially with respect to the quality of CSI measured by the inverse of the mean square error of CSI. Second, based on the derived outage probability expressions, an iterative beam design algorithm for maximizing the sum outage rate is proposed. Numerical results show that the proposed beam design algorithm yields better sum outage rate performance than conventional algorithms such as interference alignment developed under the assumption of perfect CSI.Comment: 41 pages, 14 figures. accepted to IEEE Transactions on Wireless Communication

    ChoiceMates: Supporting Unfamiliar Online Decision-Making with Multi-Agent Conversational Interactions

    Full text link
    Unfamiliar decisions -- decisions where people lack adequate domain knowledge or expertise -- specifically increase the complexity and uncertainty of the process of searching for, understanding, and making decisions with online information. Through our formative study (n=14), we observed users' challenges in accessing diverse perspectives, identifying relevant information, and deciding the right moment to make the final decision. We present ChoiceMates, a system that enables conversations with a dynamic set of LLM-powered agents for a holistic domain understanding and efficient discovery and management of information to make decisions. Agents, as opinionated personas, flexibly join the conversation, not only providing responses but also conversing among themselves to elicit each agent's preferences. Our between-subjects study (n=36) comparing ChoiceMates to conventional web search and single-agent showed that ChoiceMates was more helpful in discovering, diving deeper, and managing information compared to Web with higher confidence. We also describe how participants utilized multi-agent conversations in their decision-making process

    Determinants of Competitive Advantage for Sport Firms: Using Public Big Data in Korea

    Get PDF
    This study examines the determinants of competitive advantage with respect to economic performance of sport firms. Logit regressions estimated dependent variables of economic performance measures based on sales per capita of firms. Determinants of competitive advantage were estimated by efficiency indicators, organization characteristic indicators, and industry classification indicators. Increase in efficiency was a significant determinant of competitive advantage as well as organizational type, size of human resource, diversification of products, and sales growth rate. Operationalizing competitive advantage as outperforming the market average and better than the top 10%, the logit regression model provides means for sport firms to analyze industry data to evaluate their own performance. In particular, including efficiency estimates showed practical significance for market analysis

    AN EFFICIENT PARAMETERIZATION FOR PARETO-OPTIMAL BEAMFORMERS FOR K-USER MIMO INTERFERENCE CHANNELS

    Get PDF
    ABSTRACT In this paper, Pareto-optimal beamforming in the K-pair Gaussian multiple-input multiple-output (MIMO) interference channel is considered. Under the assumption of Gaussian signaling at transmitters and single-user decoding at receivers, a necessary condition for any transmit signal covariance matrix to achieve a Pareto boundary point of the achievable rate region is derived. Based on the necessary condition for Pareto-optimality, an efficient parameterization for Pareto-optimal transmit signal covariance matrices is obtained. The obtained parameter space is given by the product manifold of a Stiefel manifold and a subset of a hyperplane, which is a low dimensional embedded submanifold of the original high dimensional beam search space. The new parameterization enables us to devise very efficient beam design algorithms for the K-pair MIMO interference channel

    Understanding Users' Dissatisfaction with ChatGPT Responses: Types, Resolving Tactics, and the Effect of Knowledge Level

    Full text link
    Large language models (LLMs) with chat-based capabilities, such as ChatGPT, are widely used in various workflows. However, due to a limited understanding of these large-scale models, users struggle to use this technology and experience different kinds of dissatisfaction. Researchers have introduced several methods such as prompt engineering to improve model responses. However, they focus on crafting one prompt, and little has been investigated on how to deal with the dissatisfaction the user encountered during the conversation. Therefore, with ChatGPT as the case study, we examine end users' dissatisfaction along with their strategies to address the dissatisfaction. After organizing users' dissatisfaction with LLM into seven categories based on a literature review, we collected 511 instances of dissatisfactory ChatGPT responses from 107 users and their detailed recollections of dissatisfied experiences, which we release as a publicly accessible dataset. Our analysis reveals that users most frequently experience dissatisfaction when ChatGPT fails to grasp their intentions, while they rate the severity of dissatisfaction the highest with dissatisfaction related to accuracy. We also identified four tactics users employ to address their dissatisfaction and their effectiveness. We found that users often do not use any tactics to address their dissatisfaction, and even when using tactics, 72% of dissatisfaction remained unresolved. Moreover, we found that users with low knowledge regarding LLMs tend to face more dissatisfaction on accuracy while they often put minimal effort in addressing dissatisfaction. Based on these findings, we propose design implications for minimizing user dissatisfaction and enhancing the usability of chat-based LLM services

    Large-scale Text-to-Image Generation Models for Visual Artists' Creative Works

    Full text link
    Large-scale Text-to-image Generation Models (LTGMs) (e.g., DALL-E), self-supervised deep learning models trained on a huge dataset, have demonstrated the capacity for generating high-quality open-domain images from multi-modal input. Although they can even produce anthropomorphized versions of objects and animals, combine irrelevant concepts in reasonable ways, and give variation to any user-provided images, we witnessed such rapid technological advancement left many visual artists disoriented in leveraging LTGMs more actively in their creative works. Our goal in this work is to understand how visual artists would adopt LTGMs to support their creative works. To this end, we conducted an interview study as well as a systematic literature review of 72 system/application papers for a thorough examination. A total of 28 visual artists covering 35 distinct visual art domains acknowledged LTGMs' versatile roles with high usability to support creative works in automating the creation process (i.e., automation), expanding their ideas (i.e., exploration), and facilitating or arbitrating in communication (i.e., mediation). We conclude by providing four design guidelines that future researchers can refer to in making intelligent user interfaces using LTGMs.Comment: 15 pages, 3 figure
    • …
    corecore